Combined mitigation of the gastrointestinal and hematopoietic acute radiation syndromes by an LPA2 receptor-specific nonlipid agonist.
نویسندگان
چکیده
Pharmacological mitigation of injuries caused by high-dose ionizing radiation is an unsolved medical problem. A specific nonlipid agonist of the type 2 G protein coupled receptor for lysophosphatidic acid (LPA2) 2-[4-(1,3-dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl]benzoic acid (DBIBB) when administered with a postirradiation delay of up to 72 hr reduced mortality of C57BL/6 mice but not LPA2 knockout mice. DBIBB mitigated the gastrointestinal radiation syndrome, increased intestinal crypt survival and enterocyte proliferation, and reduced apoptosis. DBIBB enhanced DNA repair by augmenting the resolution of γ-H2AX foci, increased clonogenic survival of irradiated IEC-6 cells, attenuated the radiation-induced death of human CD34(+) hematopoietic progenitors and enhanced the survival of the granulocyte/macrophage lineage. DBIBB also increased the survival of mice suffering from the hematopoietic acute radiation syndrome after total-body irradiation. DBIBB represents a drug candidate capable of mitigating acute radiation syndrome caused by high-dose γ-radiation to the hematopoietic and gastrointestinal system.
منابع مشابه
Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis
Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucid...
متن کاملRadioprotection by tempol: Studies on tissue antioxidant levels, hematopoietic and gastrointestinal systems, in mice whole body exposed to sub- lethal doses of gamma radiation
Background: Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in cell death. Wholebody exposure of mice to gamma radiation leads to diminution of tissue antioxidant defense systems increases the peroxidative damage to membrane lipids and damages the haematopoietic and gastrointestinal systems. Tempol (TPL), a cell membranep...
متن کاملSoluble urokinase plasminogen activator receptor (suPAR) in the emergency department: An update
Background: The biomarker soluble urokinase plasminogen activator receptor (suPAR) is an indicator of inflammation which is increased in a variety of chronic and acute disease states. Its most promising application in the emergency setting is to aid in the prognostic stratification of patients by identifying those at high risk of deterioration. This is a narrative review of studies evaluating t...
متن کاملAn agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models.
The toxicity of ionizing radiation is associated with massive apoptosis in radiosensitive organs. Here, we investigate whether a drug that activates a signaling mechanism used by tumor cells to suppress apoptosis can protect healthy cells from the harmful effects of radiation. We studied CBLB502, a polypeptide drug derived from Salmonella flagellin that binds to Toll-like receptor 5 (TLR5) and ...
متن کاملDesign and Synthesis of Sulfamoyl Benzoic Acid Analogues with Subnanomolar Agonist Activity Specific to the LPA2 Receptor
Lysophosphatidic acid (LPA) is a growth factor-like mediator and a ligand for multiple GPCR. The LPA2 GPCR mediates antiapoptotic and mucosal barrier-protective effects in the gut. We synthesized sulfamoyl benzoic acid (SBA) analogues that are the first specific agonists of LPA2, some with subnanomolar activity. We developed an experimental SAR that is supported and rationalized by computationa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry & biology
دوره 22 2 شماره
صفحات -
تاریخ انتشار 2015